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Objective: With recent advances in molecular genetics, mouse models have been
generated for a number of disease states. Recently, the authors and others have begun
to examine normal age-related cognitive decline using mice as a model system. In this
article, and the companion article that follows, the authors present data intended to
better parameterize the aging phenotype in mice and examine the possible underly-
ing neuronal mechanisms with special emphasis on age-related changes in calcium
homeostasis. Methods: Young (4–6-month-old) and aged (22–24-month-old)
C57BL/6 mice were analyzed in terms of their spatial learning abilities in the hidden
platform version of the Morris water maze and the delay win-shift version of the
Olton radial arm maze. Results: Although aged mice exhibited cognitive impair-
ments in both behavioral tasks used, the extent of impairment differed between the
two tasks, which might prove to be advantageous under certain experimental set-
tings. Conclusions: Like in other areas of biomedical research, mice have become an
invaluable research tool in the investigation of learning and memory. It is expected
that similar benefits can be realized by developing mouse models for age-related
cognitive decline. (Am J Geriatr Psychiatry 2006; 14:1004–1011)
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Learning and memory impairments, independent
of overt pathology such as Alzheimer disease,

are considered to be a normal component of aging. It
is estimated that approximately 40% of people over
the age of 65 experience some sort of age-related
cognitive impairment.1 The exact nature of the un-
derling neuronal changes that give rise to these age-
related deficits remains unknown; however, there is

mounting evidence that one brain region—the hip-
pocampus—seems to be particularly sensitive to ag-
ing and is thought to be responsible, at least in part,
for the age-related cognitive decline that occurs dur-
ing normal aging (for a recent review2). This idea
gains support from behavioral experiments demon-
strating that aged humans,3 rats,4 and mice5 perform
poorly in tasks that require spatial learning strategies, a
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function ascribed to the hippocampus, further suggest-
ing age-related impairments in hippocampal function.

At the neuronal level, there are a number of age-
related changes that could account for the impair-
ments in hippocampal-dependent learning and
memory. These include, but are by no means limited
to, structural changes such as atrophy and demyeli-
nation, changes in transmitter release or receptor
compliment, mitochondrial dysfunction, and oxida-
tive stress (for a review6). In addition, as described in
the accompanying article,7 there is mounting evi-
dence that a number of age-related changes in neu-
ronal function may be the result of deregulation of
cytosolic free calcium homeostasis (for recent re-
views8,9).

An important first step in identifying therapeutic
targets for the amelioration of age-related cognitive
decline is the development of an animal model that
possesses the behavioral and neurophysiological at-
tributes of this disease state. Recently, we and others
have begun to use mice to study age-related changes
in learning and memory as well as neuronal func-
tion.10 Although much of the current literature has
used rats in the investigation of cognition and aging,
mice offer several advantages over rats. Mice are
smaller than rats thereby reducing the housing costs.
In addition, mice have relatively short lifespans often
reaching active senescence by 18–20 months11 and
therefore are less costly to age. Perhaps most impor-
tantly, with recent advances in molecular genetics,
mice have been derived with a large number of sin-
gle gene mutations that affect the cellular substrates
of learning and memory.12,13 With this in mind, we
have begun to carry out experiments designed to
better parameterize age-related changes in hip-
pocampal learning and memory tasks, and in the
companion article, we investigate the putative neu-
ronal substrates of these changes.

METHODS

Mice

All mice (C57BL/6Nia) used in the behavioral ex-
periments presented here were obtained from the
National Institutes on Aging colony at Harlan
Sprague Dawley (Indianapolis, IN). Young animals
were 4–6 months of age at the start of the experi-

ments and aged animals were 22–24 months of age.
All experiments were conducted with the approval
of the University of California, Los Angeles Animal
Research Committee of the Chancellor’s Office of
Protection of Research Subjects under continuous
supervision of the campus veterinarian.

Morris Water Maze

The pool was 1.2 m in diameter and made of
polypropylene white plastic. Water temperature was
maintained at 28�1°C and made opaque with non-
toxic white paint (Jazz Liquid Tempera; Van Aken
International, Rancho Cucamonga, CA) to hide the
escape platform. The Plexiglas platform was 10 cm in
diameter. The water surface was 15 cm from the rim
of the pool, and the inner wall was kept carefully
wiped to eliminate any local cues. The rim of the
pool was approximately 1.2 m from the nearest vi-
sual cue. The walls of the room were painted white,
and each wall had a single salient cluster of cues (i.e.,
black poster). The room had adjustable indirect illu-
mination. A camera was fixed to the ceiling of the
room 1.5 m from the water surface. The camera was
connected to a digital tracking device and the track-
ing information was processed by a desktop PC com-
puter with the HVS Image 2020 water maze software
(HVS Image Ltd., Twickenham, Middlesex, U.K).

Before the water maze, the mice were handled for
two minutes each day for 10 days. Every training
trial began with the animal on the platform for 30
seconds. The mouse was then placed into the water
facing the wall of the pool and allowed to search for
the platform. The trial ended either when an animal
climbed onto the platform or when a maximum of 60
seconds had elapsed. At the end of each trial, the
mouse was allowed to rest on the platform for 30
seconds. In a block of trials, the starting position was
varied pseudorandomly among six start positions.
The platform location remained in the same pool
position for a particular mouse for the duration of
training, but groups of animals were trained with
different platform positions to avoid quadrant bi-
ases. Animals were given six trials per day (in blocks
of two trials, one-minute intertrial intervals and one-
hour interblock intervals) for five days. In between
training blocks, animals were returned to their home
cage to rest. The time to reach the platform (escape
latency), along with swim speed, path length, and so
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on, was acquired and analyzed online by the track-
ing software. A probe trial was administered on day
5, one hour after the last training trial. During the
probe tests, the platform was removed from the pool.
Animals were started in a position opposite the lo-
cation of the training platform position and allowed
to swim for 60 seconds. For analysis, both the
amount of time each mouse spent searching in each
pool quadrant and the number of times the mouse
crossed the former platform location were measured.

As a control for motivation, swimming ability, and
sensory perception required to perform in the spatial
version of the water maze, on the day after water
maze testing, the mice were run in the visible-plat-
form version of the water maze. They were given six
trials in blocks of two trials with one-minute inter-
trial intervals and a one-hour interblock interval. In
this version, a distinct local cue (a black and white
stopper top) was fixed to the center of the hidden
platform by a stainless steel rod (10 cm tall). Both the
position of the marked platform and the start position
of the mice were pseudorandomly varied from trial to
trial. The start position of the mice and the position of
the platform were offset by 45° in the pool so that the
mice never started right behind the platform.

Delay Win-Shift

The apparatus consisted of an eight-arm radial
maze for mice purchased from Med Associates
(Georgia, VT) and significantly modified. The base of
the center octagonal hub and arms were made from
white PVC. The center hub included eight clear
Plexiglas doors that were operated remotely by the
experimenter seated in an adjacent room. The first
half of each arm (30 cm) was walled on either side by
clear plexiglas with the remaining distance of the
arm open except for a small (0.5 cm tall) aluminum
rail (we have settled on this configuration after find-
ing that in pilot experiments, mice do not readily
enter a completely open arm, and completely enclos-
ing the arms appeared to lack a sufficient response
cost). A small ceramic food cup was fixed to the end
of each arm. The maze was bolted to a small circular
platform and elevated from the floor. Distal cues (post-
ers, cage racks and shelving, and so on) were fixed and
remained constant throughout the experiment.

Hippocampal memory was assessed using a win-
shift paradigm adapted from Packard.14 The experi-

ment consisted of a week of pretraining followed by
15 days of training. During the pretraining phase,
animals were food-deprived to 85%–90% of their
prefood-deprived body weight. During this period,
animals were shaped to eat eight reward pellets
(20-mg chow pellets) per day from food cups iden-
tical to those on the maze. During the first 12 days,
training consisted of one session per day with each
session being composed of two phases. During the
first phase (trial A), four of eight arms were baited.
The animal was placed in the center hub, and the
doors to these four arms were opened while the
remaining four doors were kept closed. The animal
was allowed to enter the arms and retrieve the re-
ward pellets until all the pellets were consumed or
five minutes had elapsed, at which time the animal
was removed from the maze and placed in a holding
cage for two minutes during which time the maze
was thoroughly cleaned with 70% ethyl alcohol. In
the second phase (trial B), the alternate four arms
were baited. The animal was returned to the center of
the maze and all eight doors were opened. The trial
ended when the animal had eaten all four of the
reward pellets or five minutes had elapsed. The bait-
ing pattern of the maze was pseudorandom and was
different from session to session, as was the order in
which the animals are run. During the remaining
three days of training (days 13–15), the sessions were
identical to the first 12 with the exception that the
intertrial delay was expanded to 60 minutes.

An arm entry was scored when the animal reached
the final 25% of the arm where the food cup was
located. The decision to use this criterion was based on
previous experiments15,16 in which we found that
C57BL/6 mice made numerous entries onto the initial
segment of the arm without going out onto the arm.
This observation was independent of age or genotype.
In addition, this measure ensured that we only counted
animals that actually visited the food cup, which we
considered to be the more conservative measure.

Statistical Analysis

Two-way analysis of variance (ANOVA) (age and
training as factors) with repeated measures was used
to analyze the acquisition data from the water maze
experiments. Between-group comparisons for the re-
mainder of the water maze data were made using a
one-way ANOVA. Selective search strategy in the

Investigation of Age-Related Cognitive Decline Using Mice as a Model System

Am J Geriatr Psychiatry 14:12, December 20061006



water maze was assessed using a single-group t-test
with a hypothesized mean of 25%. Data acquired
during the delay win-shift experiments was ana-
lyzed using a nonparametric Mann-Whitney U (cor-
rected for ties) in Figure 1A. Multiple group compar-
isons in Figure 1B were made using a Kruskal-Wallis
test (corrected for ties) followed by a post hoc com-
parison using Dunn’s test, which corrects for multi-
ple comparison. All comparisons are the result of
two-tailed analysis. All data in the figures are pre-
sented as means � standard error of the mean (SEM)
and mean�standard deviation (SD) of the means are
detailed in the text for each measure.

RESULTS

Morris Water Maze

Spatial learning in the Morris water maze is hip-
pocampus-dependent,17,18 and performance in this
task is sensitive to aging.19,20 To determine the extent
and distribution of age-related impairment in mice,
we tested young (N�13) and aged (N�13) C57BL/
6Nia mice in both the spatial (hidden platform) and
cued (visible platform) versions of the Morris water
maze (Figure 1). Mice were trained using six trials a
day (60-second trials in blocks of two, with a one-
minute intertrial interval and a one-hour interblock
interval) for 5 days. After the last trial, on day 5, a
probe trial was conducted in which the platform was
removed and the amount of time the animals spent
in each of the four4 quadrants was recorded. On the
following day, a visible platform test was given in
which animals received six more training trials (as
before) with the exception that the platform was
clearly marked.

During the training phase (Figure 1A), young an-
imals exhibited a steady decrease in mean escape
latency from 37.5�11.0 on day 1 to 18.3�9.7
(mean�SD). Similarly, escape latencies in the aged
animals decreased from 51.8�7.8 on day 1 to 32.1�
8.7 (mean�SD). Statistical analysis using a two-way
ANOVA revealed a significant effect of training on
both groups (effect of training: F4,96�21.5, p
�0.0001). However, there was a significant differ-
ence in the escape latencies of the aged animals com-
pared with the young animals (effect of age: F1,24�
97.6, p �0.0001). This difference was not the result of
a sensory motor deficit, because the escape latencies

during the visible platform portion of the experiment
were indistinguishable between young (9.47�6.8;
mean�SD) and aged (8.5�3.2; mean�SD) animals
(F1,24�0.24, p�0.6307) (Figure 1A).

During the probe trial (Figure 1B), young animals
spent on average significantly more time (35.8�13.3;
mean�SD) in the quadrant in which the platform
was previously located (training quadrant [TQ]) than
would be expected by chance (t12�2.93, p�0.0125
compared with 25%). On the other hand, in aged
animals, the average percent time spent in the TQ
(22.9�5.5; mean�SD) was essentially at chance (t�
�1.38, p�0.1934 compared with 25%). Furthermore,
the amount of time aged animals spent in the TQ was
significantly less than that of young animals (F1,24�
10.5, p�0.0035). In fact, only one aged animal in 13
spent over 30% of the probe trial in the TQ. Similar
results were obtained for the average number of
times the animals crossed the place where the plat-
form was located during training (Figure 1C). Aged
animals made significantly fewer platform crossings
(1.7�1.2 mean�SD) when compared with young an-
imals (4.4�2.1 mean�SD; F1,24�16.7, p�0.0004).
These results demonstrate that spatial learning in the
water maze is impaired in aged C57BL/6 and are con-
sistent with previously published reports.21–24

Radial Arm Maze

The radial maze as first pioneered by Olton25 ex-
ploits rodents’ innate foraging behavior. The eight-
arm radial maze was originally configured such that
food-deprived animals were released from the center
hub and allowed to freely traverse the maze until all
the rewards were recovered from each of the eight
arms that radiated from the center hub. In this ver-
sion of the task (commonly referred to as the win-
shift version), successful foraging is accomplished
when animals enter each of the arms only once; a
repeat entry to a previously visited arm is considered
an error. Animals with hippocampal damage per-
form poorly in the win-shift paradigm.26–28 The win-
shift paradigm has also been extended to examine
the effect of imposing a delay between choices,
which forces the animals to forage prospectively us-
ing information acquired before the delay to predict
the correct arms on the subsequent trial.29–31 We
have examined the performance of young (N�9)
and aged (N�9) C57BL/6Nia mice in a version of
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the radial maze (known as delayed win-shift)
adapted from Packard14,32 with slight modification.

Mice were given 12 days of win-shift training and
testing on an eight-arm radial maze. Each day con-
sisted of two phases. In the training phase (trial A),
four randomly selected arms were baited and open.
Mice were given five minutes to retrieve all reward
pellets. An error was defined as a reentry into a
previously baited arm. After retrieval of the pellets,
the mouse was placed in a holding cage, and after a
two-minute delay, the mouse was returned for the
testing phase (trial B) in which all eight arms were
now open, and only the four previously unbaited arms
were now baited. An error was defined as a reentry
into a previously baited arm either between- or within-
phase. After 12 days with a two-minute interphase
delay, the number of errors made by aged mice (1.0�

1.0; mean�SD) and young mice (1.3�1.5; mean�SD)
was not significant (U Prime�42.5; tied p�0.8589;
Mann-Whitney U). Mice were then tested for an addi-
tional 3 days with a 60-minute interphase delay.

As shown in Figure 2A, aged animals as a group
appear not to be impaired on the long-delay (60-
minute) shift phase (3.7�2.4; mean�SD) compared
with young mice (2.2�1.4; mean�SD) (U Prime�

54.0; tied p�0.7217; Mann-Whitney U). However,
when segregated into aged-impaired (�4 errors) and
aged-unimpaired (�4 errors), (Figure 2C, D) based
on individual performances,33 there was a significant
difference among age-unimpaired (1.3�0.7; mean �

SD), age-impaired (5.7�0.8; mean�SD), and young
(2.2�1.4; mean�SD) mice (df�2, H�10.0 p�

0.0069; Kruskal-Wallis test) with the aged-impaired
making significantly more errors than either the
young or age-unimpaired groups (p �0.0001 for both
comparisons; Dunn’s test).

These results are consistent with the previous ob-
servation that individuals within the same cohorts of
aged rodents exhibit variable rates of cognitive im-
pairment.34,35 It is interesting to note that in the delay
win-shift task, we observed a segregation in perfor-
mance with approximately half of the aged animals
making more than three errors on trail B after the
60-minute delay (Figure 2D). This segregation into
aged-impaired and aged-unimpaired groups has
been demonstrated in rats and has been exploited to
correlate age-related biomarkers with cognitive per-
formance.36

FIGURE 1. Aged C57BL/6 Mice Are Impaired in the Spatial
Version of the Morris Water Maze

(A) Average time to reach the escape platform (escape latency)
in seconds is plotted for each of the training days (day 1–5) as well
as for the visible platform trail, when the platform was clearly
marked. (B) Results from probe trial on the day after training. Aged
animals (N�13) spent significantly less time in the quadrant of the
pool where the platform was located during training (training quad-
rant [TQ]) when compared with young animals (N�13). The dashed
line (25%) represents random or “chance” performance. AR: adjacent
right; AL: adjacent left; OP: opposite. (C) Similar results were ob-
tained when platform crossings were examined during the probe
trial. Aged mice were much less likely to cross the location where the
platform was located during training (platform 1 corresponds to the
platform in the TQ). Data are represented here as the mean� stan-
dard error of mean. *p �0.05; one-way analysis of variance; see text
for standard deviations and detailed statistics.
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DISCUSSION

There is an emerging consensus in the literature re-
garding spatial learning ability in aged mice. Most
studies21–24,39 but not all40 find that aged mice are
impaired in the spatial version of the Morris water
maze. Data presented here are consistent with this
general view. It is worth noting that in the experi-
ments presented here, as well as in previous experi-

ments from our laboratory,10 we found severe im-
pairments in the spatial version of the water maze in
aged C57BL/6 mice. In the experiment reported
here, only one of the 13 mice showed any evidence of
spatial learning after 5 days of training. These results
are in marked contrast to previous studies that report
consistent and clear segregation of Long-Evans rats
into aged-impaired and aged-unimpaired popula-
tions.36,41 It is also important to note that this cata-
strophic learning impairment seen in C57BL/6 aged

FIGURE 2. Aged C57BL/6 Mice Are Impaired in the Delay Win-Shift Version of the Olton Radial Arm Maze

(A) Group data for the last three days on trial A and trial B after a one-hour delay. Average number of errors for young (N�9) and aged mice (N�
9) was not significantly different on trial A. There was a statistically nonsignificant trend on trial B with the aged animals making on average more errors
after the delay. (B) The same results from trial B in (A) are replotted separating aged learners and aged nonlearners. When separated this way, aged
nonlearners made significantly more errors than young animals and aged learner groups ([C] and [D]). Histograms of data from trial B for young and
aged mice with the number of errors plotted on the x-axis as a function of number of occurrences (count) on the y-axis. Data are represented as the
mean�standard error of mean in (A) and (B). *p �0.0001 (Dunn’s test) for comparisons between aged nonlearners and young or aged learner groups.
See text for standard deviations and detailed statistics.
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mice is unlikely the result of sensory/motor impair-
ments, because aged animals do as well as young
mice when the platform location is clearly marked
(Figure 1A).

The results from the water maze experiments are
in contrast with the results obtained using the delay
win-shift version of the radial arm maze. In the delay
win-shift task, approximately half of the aged mice
were significantly impaired when a one-hour delay
was imposed with the remaining aged animals per-
forming as well or better than the young mice. As
was the case with the water maze, the age-related
impairment does not appear to be a function of a
nonspecific sensory or motor impairment, because all
of the aged animals performed as well as young
animals during the first phase (trial A) when the
cognitive load was substantially lower. The fact that
we did not observe this segregated distribution in the
spatial version of the water maze may reflect the
inherent difference in dry land and water maze per-
formance in mice as has been previously suggest-
ed.37,38

Depending on the experimental goal, either task
might be appropriate or advantageous. For example,
studies designed to test whether a manipulation—
either genetic or pharmacologic—ameliorates or re-
verse age-related cognitive decline, could use the
Morris water maze as a measure of cognitive ability,
given the large dynamic range that it affords in aged

animals. On the other hand, if the experimental de-
sign is to rely on specific biomarkers that are to be
correlated with age-related changes in cognition, the
delay win-shift task would be more suitable given
that it allows for comparisons of individuals within a
given age group.

Finally, it is worth noting that the impairments
that we have described are specific to age-related
changes in neuronal function outside of specific pa-
thologies such as Alzheimer disease; mice do not
exhibit age-related neuropathologies such as forma-
tion of amyloid plaques of fibrillary tangles.42 There-
fore, in addition to the advantages already discussed,
the development of transgenic mice that mimic
changes known to occur during “normal” aging will
likely become increasingly valuable as research tools
and will also provide a framework from which fu-
ture investigations will advance targeted therapies
intended to ameliorate cognitive impairments in the
elderly.
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